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Abstract

There is an ever growing difficulty in acquiring an accurate and clear situational

awareness of all objects in the orbit of Earth. The growing difficulty is a result

of the shear number of objects being placed in orbit, advancing technology, and a

growing threat from America’s adversaries. There are currently several methods of

detecting and tracking objects in orbit that include radar and optical telescopes.

Optical telescopes have a better resolution and can yield better intelligence if they

take advantage of the most up-to-date optical technology and astronomy practices.

Some of these technologies include atmospheric monitors, adaptive optics, stellar

interferometers, and fringe trackers. All of these technologies are an attempt to

obtain a diffraction limited image buy canceling out the effects of the atmosphere.

There is currently a lack of research into how the atmosphere effects Zernike

piston. This Zernike piston is a coefficient related to the average phase delay of a

wave. Usually Zernike piston can be ignored over a single aperture because it is

merely a delay added to the entire wavefront. For multi-aperture interferometers

though piston cannot be ignored. The statistics of Zernike piston could supplement

and improve atmospheric monitoring, adaptive optics, stellar interferometers, and

fringe tracking. This research will focus on developing a statistical model for Zernike

piston introduced by atmospheric turbulence.
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ZERNIKE PISTON STATISTICS IN TURBULENT MULTI-APERTURE

OPTICAL SYSTEMS

I. Introduction

The defense of America’s space assets are at a higher priority now than ever before.

The space capabilities of America’s rivals are worrying. The recent reestablishment

of the U.S Space Command and the establishment of the sixth military branch of

the U.S military, the United States Space Force, is testament to America’s priority

in countering this threat from our adversaries. The first point of order is to gain a

better everyday understanding of the situation in orbit. Space Situational Awareness

(SSA), is a must to defend our space assets not only from our adversaries but also

from space debris. SSA can be accomplished in a variety of ways, whether it be with

space based, ground based, radar, or optical telescopes.

1.1 The Problem

1.1.1 Problem Background

Since the time of Galileo the ground based optical telescope has been, and con-

tinues to be, the most valuable tool for observing objects in our orbit and solar

system. In the previous decades though space based telescopes have shown promise,

and many think they are the future of space imaging. Space based telescopes cost

orders of magnitude more to not only build, but also to test and sustain than ground

based. The Hubble Space Telescope needed to be sustained through the space shuttle

program and can longer be sustained. The only advantage to being space based is

1
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the ability to take higher resolution images. This is due to there being an absence

of atmosphere. The atmosphere distorts the light as it passes through the medium.

This distortion is the reason why the most advanced ground based telescopes in the

world are located in only a couple locations like Hawaii or Chile. These locations

have better seeing quality because the atmosphere distorts the light less. The ability

to correct for this distortion is difficult, which led to the idea of space based tele-

scopes. In recent years, some in the space imaging community have started arguing

that ground based telescopes should get a second chance. Advances like adaptive

optics, atmospheric sensors, and an understanding in atmospheric sciences have led

to ground based telescope capabilities matching that of space based telescopes. This

gives an obvious advantage to ground based telescopes because of the far cheaper life

cycle cost. The Air Force Research Lab (AFRL), Directed Energy Directorate, is the

current military office leading the research effort for imaging through the atmosphere.

Further research into sensing and controlling atmospheric distortions is well worth the

cheaper cost of ground based telescopes.

A type of telescope array called a stellar interferometer has shown the promise of

having very fine resolution, sometimes orders of magnitude better than that of single

aperture telescopes with adaptive optics. A subsystem of importance in interferom-

eters is the optical delay line. The reason for this delay line is to simply match the

optical path lengths in the two or more telescopes. If there is path difference the

higher resolution suffers. Currently the U.S. Navy is the military leader of stellar

interferometer research with their Navy Precision Optical Interferometer (NPOI).

A practice in astronomy that has shown promise is the combination of atmospheric

monitoring, adaptive optics, long baseline stellar interferometry, and fringe tracking.

These four separate technologies have been around for more than several decades but

the practice of using all four together is relatively new. The first location to get close

2
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was the Keck Observatory in Hawaii but this site had its challenges and funding ended

for the Keck Interferometer program in 2012. The NPOI got some of their equipment

but they lack complex, cutting edge adaptive optic systems. The most promising

interferometer in the world is the Very Large Telescope Interferometer (VLTI) in

Chile which is in operation and produces high resolution images comparable to the

best NPOI images. The VLTI uses adaptive optics and has four massive 8.2 meter

apertures and state of the art beam combination facilities. The only thing VLTI

doesn’t do is fringe tracking, which the NPOI does and is why the two have similar

resolution currently. The VLTI is working on implementing fringe tracking and it’s

predicted that once it does the telescope will have a resolution of 0.0025arcseconds, a

limiting magnitude of 14 at near-infrared, and cost of $19 million to build [1][2]. For

comparison, the James Webb Space Telescope will have a resolution of 0.1arcseconds,

a limiting magnitude of 34 at near-infrared, and a cost of $10 billion to build [3][4].

This means the VLTI will have a resolution 40 times greater at a mere thousandths

of the cost, yet won’t be able to see the very faint objects like distant galaxies. There

is still work to be done to obtain the same amount of light collected as space based

telescopes.

It is even theorized that an interferometer being built in New Mexico by New

Mexico Tech could have resolutions 100 times greater than that of the James Webb

Space Telescope. This interferometer is called the Magdalena Ridge Observatory

Interferometer (MROI) and when completed will have baselines from 7.8m to 340m

[5]. In fact one of its core missions is space situational awareness. It has received

funds or aid from the Naval Research Lab (NRL), AFRL, the National Aeronautics

and Space Administration (NASA), National Science Foundation, and the University

of Cambridge. Figure 1 shows a conception of what the finished MROI will look like.

Further research into seeing through the atmospheric is advantageous in producing

3
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Figure 1: An artists conception of the MROI being built currently in New Mexico.[5]

better, higher resolution images with ground based telescopes. This higher resolution

is of great concern for SSA of objects in GPS and geosynchronous orbits (GEO).

Geosynchronous orbit and global positioning system (GPS) orbits are at a far higher

altitude than low earth orbit (LEO). LEO is an altitude of 2, 000km or less, GPS

constellations are usually above 25, 000km, and GEO, along with the graveyard orbit

where GEO satellites are placed and deactivated, is near 35, 800km. Imaging and

detecting objects at LEO is fairly easy while imaging and detecting objects of the

same size in our GPS orbits, GEO, and farther are far harder. An analogy is how

imaging Mars is far harder than imaging the moon even though Mars is bigger but

much farther away.

Not only is this a military problem but also a public problem. A mission of NASA

mandated by congress is to locate and warn the nation of possible asteroid collisions,

also known as planetary defense. So far NASA has had trouble in completing this

planetary defense mission for the same reasons. This is a capability gap in our space

battle management and planetary defense systems that needs to be addressed before

threats become reality.

4
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1.1.2 Problem Statement

There is a need for further research into atmospheric sensing and optical stellar

interferometry in order to lower costs of ground based optical SSA initiatives and raise

the quality of intelligence gathered by these initiatives.

1.2 This Research

1.2.1 Basic Concepts

There is currently a lack of research into how the atmosphere effects something

called Zernike piston. This Zernike piston is a coefficient related to the average phase

delay of a wave. Usually Zernike piston can be ignored because it is a delay added to

the entire wavefront. For interferometers though piston can not be ignored.

Current sensing methods of determining the main atmospheric parameters involve

recording star jitter and using the statistics of the jitter to determine the parame-

ters. Star jitter is caused mostly by air turbulence. The current methods use either

outdated turbulence models or a faulty relationship between the star jitter and the

parameters. Zernike tilt, which can be thought of as the average slope of a wavefront,

along with a better turbulence model could be used to determine the atmospheric

parameters.

1.2.2 Hypothesis

Lower order Zernike polynomial coefficient statistics of multi-aperture optical sys-

tems can be used for simulation of turbulence effects, especially fringe variance, and

for measuring atmospheric turbulence parameters

5
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1.2.3 Research Objectives

The following are the objectives that have been sought during the course of this

research:

1. Develop a mathematical model between atmospheric turbulence and the Zernike

piston and tilt coefficients.

2. Simulate the model and analyze the generated data.

3. Record interferometric fringe patterns and image jitters and compare this recorded

data to the simulated data.

4. Explore possible uses for this model.

These objectives where chosen to support the problem statement and research hy-

pothesis.

1.2.4 Approach

In order to prove the hypothesis and complete all research goals an approach was

developed. First a turbulence model needs to be chosen. Then the mathematical

model between this turbulence model and Zernike piston will be developed. Previous

verified work done by several individuals will be used as a framework for this model.

The same will then be done for Zernike tilt. Once both models are complete then

simulations will be performed and data generated for analysis. An optical experiment

will be performed to collect empirical data. This empirical data will be analyzed

against simulated data to verify the accuracy of the method. After these basic steps

are completed then several possible uses for this model will be explored until the

research is due.

6
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II. Background and Literature Review

As a wavefront passes through the atmosphere the nonuniform density of the

atmosphere causes optical phase aberrations. The connection between these optical

aberrations and air density is the index of refraction of air which is a function of

density. The phase of the wavefront arriving at the pupil of an optical system will be

referred to as a phase screen.

This phase screen can be equated to a sum of weighted, orthogonal polynomials

called Zernike polynomials. Each weight coefficient would have a spatiotemporal

variance and all will have some correlation with another. The covariance of the the

Zernike coefficients for the atmospherically disturbed wave front are important in any

optics field where images are being collected through atmosphere.

This chapter will begin with a description of Zernike decomposition and atmo-

spheric turbulence models. It will then discuss previous efforts in statistical models

and atmospheric sensing. The final sections of this chapter will explain interferometry

to better understand why piston differential is important and how it can be used.

2.1 Zernike Decomposition

Optical aberrations can be modeled using Zernike phase decomposition which is

the method of breaking up a phase screen into a sum of weighted polynomials defined

on the unit circle. Zernike polynomials form an orthonormal basis which is especially

useful. Noll [6] summarizes that “Typical interest in Zernike polynomials centers

around a polynomial expansion of an arbitrary wave front over a circular aperture

of arbitrary radius.” For the purpose of this thesis, Cartesian coordinates will be

used contrary to the polar coordinates. The lowest degree polynomial is unity. This

polynomial is termed piston and can be described as the group delay of the wave front

7
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or the delay as a whole the wave front has experienced. The next two polynomials

are tip and tilt aberrations that ultimately shift images at a detector and are of the

first degree. The polynomials keep increasing in degree until an appropriate number

to estimate the shape of the phase screen under consideration is chosen.

Table 1 identifies nine polynomials, two different indexes used for those poly-

nomials, and their common names. The universal nomenclature of Zernike polyno-

mials takes the form Zm
n , where n and m are non-negative integers with n ≥ m.

Zernike polynomials by definition have a radial range between (−1, 1) which means

that
√
u2 + v2 ≤ 1. Figure 2 shows what the first 21 Zernikes appear as in phase

Table 1: Zernike Polynomials

Zm
n OSA Index Noll Index Polynomial(Cartesian) Name

Z0
0 0 1 1 Piston

Z−1
1 1 3 2v Tilt (Y-Tilt)

Z1
1 2 2 2u Tip (X-Tilt)

Z−2
2 3 5 2

√
6uv Oblique Astigmatism

Z0
2 4 4

√
3(2(u2 + v2)− 1) Focus

Z2
2 5 6

√
6(u2 − v2) Vertical Astigmatism

Z−3
3 6 9 2

√
2v(3u2 − v2) Vertical Trefoil

Z−1
3 7 7 2

√
2v[3(u2 + v2)− 2] Vertical Coma

Z1
3 8 8 2

√
2u[3(u2 + v2)− 2] Horizontal Coma

screen format. Piston, the top most phase screen in Figure 2, is flat and only con-

tributes a constant phase shift over the phase screen. In single aperture telescopes,

the majority of stellar telescopes, this constant phase shift doesn’t contribute to atmo-

spheric aberrations as observed at the detector. For this reason it is ignored in almost

all single aperture applications. In most cases a good approximation of a atmospheric

phase screen can be accomplished using the first 11 Zernikes. The reason for this is

due to the nature of turbulence and the covariance of the Zernike coefficients which

8
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Figure 2: Phase screen representations of separate Zernike polynomials.

will be explained in the following subsections.

Because this paper draws from the work of Noll, the Zernike index used in [6] will

be used, it has been termed the Noll sequential indices. This indices is defined by Eq.

1. In Noll’s paper he described the patterns of the Fourier transforms of the Zernike

Polynomials, Qj(fu, fv), over an aperture of radius R. He defined his index value j

as:

j = (n2 + n)/2 + |m| (1)

Noll defined the the Fourier transform of the aperture weighted Zernike Polynomials

as:

Qj(fu, fv) = F {A(u, v)Zj(u, v)}(fu,fv) (2)

where A(u, v) is the aperture function, Zj(u, v) is the chosen Zernike polynomial, and
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fu and fv are spatial frequencies of u and v respectfully. This Q function takes the

following pattern as defined by Noll:

if m = 0,
√
n+ 1

Jn+1(2π
√
f 2
u + f 2

v )

π
√
f 2
u + f 2

v

(−1)(n)/2 (3)

if m 6= 0, j is even,
√

2n+ 2
Jn+1(2π

√
f 2
u + f 2

v )

π
√
f 2
u + f 2

v

(−1)(n−m)/2im cos(m tan−1(fu/fv))

(4)

if m 6= 0, j is odd,
√

2n+ 2
Jn+1(2π

√
f 2
u + f 2

v )

π
√
f 2
u + f 2

v

(−1)(n−m)/2im sin(m tan−1(fu/fv))

(5)

Now that the Zernike decomposition has been explained in detail the second piece

needed to explain to the covariance of Zernike coefficients will be discussed. Tur-

bulence models are needed to explain how the turbulence effects the Zernikes both

spatially and temporally.

2.2 Turbulence Models

Atmospheric turbulence models are used to aid in the correction of optical aber-

rations introduced by the atmosphere. These models are fluid dynamic models that

use the index of refraction of turbulent eddies, which can be thought of as air packets.

In the case of turbulent eddies being isotropic then the power spectral density (PSD)

of the index of refraction is a function of one wave-number. Isotropic eddies will be

assumed for this research.

The PSD of the index of refraction, ΦK
η (f), was originally defined from the work

of Kolmogorov [7] and can be seen as Eq. 6, which was drawn from [8]. The variable

C2
n is the structure constant which serves as a measure of strength for the refractive
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index fluctuations and f is generic spatial frequency in any 2-D spatial direction.

ΦK
η (f) = 0.033C2

n(f)−11/3 (6)

During the course of this thesis, the PSD of the phase fluctuations will be used instead

of the PSD of the index of refraction. The phase fluctuation is directly related to the

index of refraction fluctuation. The PSD of the phase fluctuations, ΦK
Θ (f), can be

seen below as [6][9][10]:

ΦK
Θ (f) = 0.0022896r

−5/3
0 (f)−11/3 (7)

where r0 is the seeing parameter, which is a function of the refraction index structure

constant, C2
n, and average wavelength, λ0. The seeing parameter was first introduced

by Fried [8] and is a parameter of the atmosphere. While Kolmogorov turbulence

predicts the PSD of the inter-range frequencies accurately, it fails at lower and higher

spatial frequencies [8]. For those lower and higher frequencies other turbulence models

must be used.

2.2.1 Von Karman Turbulence

A modified version of Kolmogorov turbulence that is widely used is von Karman

turbulence [11] [12] [9] [13]. This model adds a constant value bias to the spatial

frequency. As seen in Eq. 8 the constant value is f0 which is the inverse of a parameter

called the outer scale or L0.

ΦV
Θ(f) = 0.0022896r

−5/3
0 (f 2 + f 2

0 )−11/6 (8)
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This additional value drives the power to a constant at lower frequencies instead of

it going to infinity as frequencies approach zero, which can be observed in Figure 3

In essence it acts as a low pass filter and removes the non-integrable pole at f = 0.

This model is more realistic than Kolmogorov’s due to there being a finite amount of

air in the atmosphere [8].

Figure 3: Comparison between the PSD of Kolmogorov and von Karman turbulence

2.2.2 Other Outer Scale Models

Since the shape of the spectrum is unknown, various other models have been

theorized that include the outer scale parameter. Among them are the Exponential

and Greenwood [12][14]. Exponential and Greenwood turbulence can bee seen by Eq.

9 and Eq. 10 respectfully. These models still hold close to the Kolmogorov model in

the inter-range of the spectrum but break from Kolmogorov in lower frequencies. As

seen in Figure 4 these models still approach infinity as frequencies approach zero but

12
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they approach infinity slower than the Kolmogorov model does.

ΦE
Θ(f) = f−11/3(1− e−f2/f20 ) (9)

ΦG
Θ(f) = (f 2 + f0f)−11/6 (10)

Figure 4: Comparison between Kolmogorov, von Karman, exponential, and Green-
wood index of refraction PSD models.

Turbulence models along with Zernike decomposition is all that is needed to create

a statistical model of how the atmosphere effects a wavefront. This statistical model

will now be explained.

2.3 Covariances of Zernike Coefficients

The covariance of the coefficients of Zernike polynomials is a useful data point

for several electro-optics subjects. If known it can be used to simulate phase screens,

as control input to adaptive optics systems, and to find atmospheric parameters if
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unknown. Phase is not defined on the unit circle but is defined within an arbitrary

radius R. In the case of this thesis, and in the case of Noll’s work [6], a circular

aperture, A(u, v), defined in Eq. 11 will be used for all apertures:

A(u, v) =

1 ,
√
u2 + v2 ≤ 1

0 ,
√
u2 + v2 > 1

(11)

A phase screen, Θ(x, y), is the sum of all weighted polynomials as seen in Eq.12:

Θ(x, y) = Θ(Ru,Rv) =
∑
j

ajZj(u, v) (12)

where the phase screen is defined over x and y and the Zernike polynomial is defined

over the unit circle coordinates u and v. Again, Zj is the jth Zernike polynomial

and aj is the jth Zernike coefficient. With this in mind, the definition of any Zernike

coefficient can be defined as Eq.13.

aj =

∫ ∫
A(u, v)Zj(u, v)Θ(Ru,Rv)dudv (13)

It is assumed that Zernike coefficients of atmospheric phase screens are zero mean,

Gaussian random variables. A covariance of two coefficients can hence be written as:

〈
a∗jaj′

〉
=

〈∫ ∫
A∗(u, v)Z∗j (u, v)A(u′, v′)Z ′j(u

′, v′)Θ∗(Ru,Rv)Θ(Ru′, Rv′)dudvdu′dv′
〉

(14)

due to the aperture function and Zernike polynomial not being random processes the

expected value can be closed onto the phases in Eq. 14 leading to:

〈
a∗jaj′

〉
=

∫ ∫
A∗(u, v)Z∗j (u, v)A(u′, v′)Zj′(u

′, v′) 〈Θ∗(Ru,Rv)Θ(Ru′, Rv′)〉 dudvdu′dv′

(15)
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The expected value of the product of the phase with its complex conjugate is the

definition of autocorrelation of the phase hence:

〈
a∗jaj′

〉
=

∫ ∫
A∗(u, v)Z∗j (u, v)A(u′, v′)Zj′(u

′, v′)Γθ(Ru−Ru′, Rv −Rv′)dudvdu′dv′

(16)

where Γθ is the autocorrelation function of the fluctuating phase. Noll then transforms

Eq. 16 to the spatial frequency spectrum as seen below. This transformation involves

the Wiener-Khinchin theorem and scaling property of Fourier transforms, and a proof

can be found in appendix A.

〈
a∗jaj′

〉
= R−2

∫ ∫
Q∗j(fu, fv)Qj′(fu, fv)Φθ(fu/R, fv/R)dfudfv (17)

The reason for writing in the frequency spectrum is to allow the use of the phase PSD

as discussed in section 2.2. Noll’s results for the normalized covariance of Zernike

coefficients 2 through 9 can be seen in table 2. It should be noted that piston, tilt,

and tip aberrations have the greatest variances of any other aberration introduced by

the atmosphere.

Table 2: Normalized Zernike coefficient covariance matrix as calculated by Noll
j - index 2 3 4 5 6 7 8 9

2 0.448 0 0 0 0 0 0.0142 0
3 0 0.448 0 0 0 0.0142 0 0
4 0 0 0.0232 0 0 0 0 0
5 0 0 0 0.0232 0 0 0 0
6 0 0 0 0 0.0232 0 0 0
7 0 0.0142 0 0 0 0.00619 0 0
8 0.0142 0 0 0 0 0 0.00619 0
9 0 0 0 0 0 0 0 0.00619

There have been previous attempts to compute Zernike coefficient covariance using

von Karman turbulence instead of Kolmogorov turbulence [15][16][17]. All of these
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efforts used Noll’s work as a basis and interchanged the Kolmogorov PSD for the von

Karman PSD. They however approximate the integral formed by this substitution in

order to solve it which yield different results to this thesis which analyzes the integral

using a computer. These models also, as of yet, are not verified with empirical

evidence.

2.4 Current Atmospheric Profiling and Monitoring Techniques

There are a mass of different devices and techniques currently used to monitor or

profile the atmosphere. Atmospheric profiling is developing an understanding of the

properties of individual layers of atmosphere at different altitudes from observing the

entire path. Monitoring is having an apprehension of just the sum of the layers or the

entire atmosphere along a certain path. Profiling is useful when observing entirely

through the atmosphere and partially through the atmosphere but it is difficult to

do. Some profiling methods only profile the atmosphere partially, up to or above a

certain altitude. Monitoring is useful when observing entirely though the atmosphere

and is relatively easy because only a couple data points are needed. For the sake of

this paper there will be a focus on monitors and profilers that can make observations

through the entire atmosphere.

Lombardi, et al.[18], addresses a monitor called the Differential Image Motion

Monitor (DIMM). This type of monitor looks at the light of a star using two or more

optical paths, usually with an aperture masked telescope. The two paths create two

separate images of the same star. Figure 5 is a visual description of the device. The

covariance and variance of the image motion gives enough information to estimate the

seeing parameter r0. This technique assumes Kolmogorov turbulence so outer scale is

assumed to be infinite. It is important to note that DIMM relates the image motion

of the star to the spatial rate of change, or the derivative of the wave front with
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respect to x and y, also known as angle of arrival [19]. Angle of arrival is different

than Zernike tilt. While it is true that Zernike tilt is the average slope of the wave

front, the average slope isn’t always the derivative, hence the two are not the same

and can yield different results. Tokovinin [20] argues that DIMM actually measures

Zernike tilt variances and not that of angle of arrive variance and also argues that

DIMM be modified to follow von Karman turbulence.

Figure 5: Visual layout of a DIMM [18]

A profiler of interest is the Scintillation Detection and Ranging (SCIDAR) tech-

nique. SCIDAR according to Lombardi [18], “extrapolates the OTP [turbulence pro-

file] of the whole atmosphere up to 20-25 km above surface, with a resolution of few

hundreds meters by measuring the spatial correlation of the scintillation produced on

a telescope pupil plane by a double star target.” Scintillation is change in intensity of

light due to atmospheric turbulence. The limiting factor in this method is the need

for a ‘double star target’ which is uncommon. The aperture of this device also must

be larger than 1 meter to operate effectively leading to it being costly.
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The last method to discuss is the Generalized Seeing Monitor (GSM) [14]. This

monitor was developed using the von Karman turbulence model and uses image mo-

tion like DIMM. Also like DIMM, the GSM uses angle of arrival variance and covari-

ance instead of the Zernike tilt variance and covariance. In a sense, GSM is a von

Karman version of DIMM although there are several other differences between the

two. The GSM measures the seeing parameter, r0, and also the outer scale, L0, but

can also determine other parameters not of interest in the paper like isoplanatic angle

and coherence time. It can do this by using four apertures instead of just two.

In summary, monitors and profilers in use have not taken full advantage of both

Zernike decomposition and non-Kolmogorov turbulence to achieve atmospheric see-

ing. Another missed opportunity for seeing monitors has been interferometry which

will be described in the next section.

2.5 Atmospherically Induced Piston Differential

The main concern of interest in of this thesis is modeling the statistics of path

difference and piston differential using Zernike decomposition as stated in Chapter 1.

Zernike decomposition, Zernike covariance, and interferometry have been explained

to gain some understanding of how to achieve this goal. This section will describe

what piston differential is and how it is related to path difference.

Phase differential is the difference in two wave fronts. Piston differential is the

difference of two wave front averages or the difference in the Zernike piston coeffi-

cients. This research is concerned with the difference in two Zernike pistons. Figure

6 illustrates piston differential of a wave front above the aperture plane for an inter-

ferometer.

The total wave front over the entire area of the apertures and baseline is distorted

by the atmosphere. The wave front arrives at one aperture before another causing a
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Figure 6: The effects of atmospheric distortion on path difference

temporal delay. This temporal delay can be translated into a path delay because the

speed of light is known. Hence, while the piston of one aperture is meaningless the

piston difference between two apertures is a cause of great concern when trying to

generate a fringe pattern.

2.6 Interferometry

In order to better understand how an interferometer works, this section will begin

by discussing how an optical system can take advantage of the wave nature of light

to produce intensity patterns with more spatial frequency information than a normal

diffraction pattern. Coherence, or correlation of a field, will be discussed to an ap-

propriate level to gain an understanding of why certain patterns form in the intensity

seen at an interferometer’s detector. After a discussion on the effect of coherence, and

how temporally delaying light effects the intensity, the natural causes of delay will be

explained. The natural cause of concern with respect to this research is atmospheric

delay or delay caused by the atmosphere.

2.6.1 Coherence

In wave optics the spatial and temporal correlation of light fields can be described

by correlation functions, also known as coherence functions in optics. Even though
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it’s not a complete description, this coherence function gives a satisfactory statistical

description of the light for modeling an optical system. Fields can be both spatially

coherent and temporally coherent.

2.6.1.1 Definitions

A way to observe the coherence of light is with an interferometer. An interferome-

ter uses the spatial and temporal coherence of light to create interference patterns. If

the light is more coherent the number fringes will be greater, and vice versa incoherent

light forms little to no fringe patterns.

Terms to consider while experimenting with coherence and interferometers are:

� Fringe (Interference) Pattern- The pattern made by the interfering fields.

� Complex Degree of Coherence- a functional degree of spatial and temporal co-

herence.

� Coherence Envelope- The area where the detect-ability of a fringe pattern is

most likely. Usually the area within the first null of the fringe pattern.

� Optical Path Difference or OPD- A difference in the total distance light must

travel from source to sensor in the two or more optical paths of an interferometer.

Also referred to as path error in the context of matching path lengths.

For the purpose of simplicity, the following equations describing interferometry

are only in the y-direction.

2.6.1.2 Spatial Coherence

Spatial coherence is concerned with the ability of light to interfere with a spatially

shifted version of itself. The famous Young’s experiment demonstrates the ability

of light to interfere with itself spatially and proved the wave nature of light. The
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experiment calls for light from a coherent, lower bandwidth source to be propagated

through two pinholes. The light from the pinholes then propagates to a detector

plane but the waves from the two pinholes interfere during the propagation. A set

up of Young’s experiment can be seen by Figure 7. The arrows right of the detector

plane mark where intensity peaks.

Figure 7: Young’s Experiment

The intensity at the detector of Young’s experiment, ID(y), is described by Good-

man [8] as:

ID(y) = 2I0

[
1 + µ(P1, P2)cos

(
2πB

λ0z
y

)]
(18)

where P1 and P2 are the points where the pinholes are located, µ(P1, P2) is the complex

coherence factor or a degree of spatial coherence between pinhole 1 and 2. I0 is a

constant intensity produced from one pinhole. Notice that the frequency of the cosine

function is dependent on the baseline B, or spacing of the pinholes. The variable λ0

is the average wavelength. In this case the pinholes are assumed to be ideal and z is

the distance in between the pinhole plane and detector plane.

There are many methods of generating spatially incoherent light but the best
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example of spatially incoherent light is natural light from our sun. The Van Cit-

tert–Zernike theorem [8] implies that as spatially incoherent light propagates away

from its source it becomes more coherent. Light from a star that is light-years away

is coherent while light very close to a star, such as our own sun, is incoherent due

to the way it is produced and the size of the sun. The area of the object generating

or reflecting the light is another factor that contributes to spatial coherence. Smaller

surface areas produce or reflect light that is more spatially coherent than larger sur-

face areas. The area where light is spatially coherent is the coherence area and can

be estimated by the ratio:

AC ≈
(λ0z)2

AO
(19)

where AO is the area of the object producing or reflecting the light and z is the distance

to the object. These attributes are important in characterizing the coherence of light

being reflected off of satellites and other near earth objects. The smaller an object,

the more difficult it is to see with a classical telescope. This is due in part by there

being less reflected light, but these smaller objects produce light with higher spatial

coherence.

2.6.1.3 Temporal Coherence

Light may interfere with a time-delayed wave when the delayed wave is identical or

by some degree spatially coherent. Temporal coherence is concerned with this ability

of light to interfere with a time-delayed version of itself. If the waveform remains

constant throughout time, then it will be perfectly temporally coherent throughout

time. The Michelson interferometer demonstrates the temporal coherence by splitting

a beam, delaying one path by a distance, and then recombining the beams before

detection. While the original purpose of the Michelson interferometer was to test the

discredited theory of luminous aether it has many applications today. Figure 8 shows
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the set up of the Michelson interferometer.

Figure 8: The Michelson Interferometer

The intensity at the detector of this temporal interferometer is given by Goodman

[8] as:

ID(d) = 2I0

[
1 + γ

(
2d

λ0

)
cos

(
4πd

λ0

)]
(20)

where γ is the complex degree of self-coherence and is a function of time delay. Notice

that the cosine in this intensity is a function of delay which in this case is 2d or twice

the distance of the delay due to the light traversing the delay path twice.

2.6.2 Temporal Delay in Spatial Interferometers

In the example of Young’s experiment temporal coherence was ignored, yet spa-

tial interferometers do have temporal coherence effects. These effects will now be

accounted for in order to better understand why path difference is important. Good-

man [8] explains in short that the spatial coherence is responsible for the coherence

envelope at zero path length difference, while temporal coherence is responsible for

the tapering out of the fringes as path length difference grows. Figure 9 shows a stel-

lar interferometer and an example of how path length difference is introduced. In this
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Figure 9: Typical Stellar Interferometer

figure, d1 is a optical path difference introduced simply by positioning the apertures

to observe a source of axis. The value d2 is the OPD built into the interferometer

to compensate for this path difference. Trigonometric causes are the main source of

path difference but are easily remedied by setting d2 equal to d1.

The temporal coherence introduced by the path difference makes this spatial in-

terferometer into a spatiotemporal interferometer. The intensity seen at the detector

when the apertures are pinholes can then be given as:

ID(y; τ) = 2I0

[
1 + γ(P1, P2; τ)cos

(
2π

λ0

(
By

z
−∆d

))]
(21)

Notice that the path difference ∆d causes a phase shift in the fringe patterns. It

will also effect the complex degree of coherence γ(P1, P2; τ), which is a degree of how

spatially and temporally correlated the two interfering waves are. If we were to use

identical apertures instead of pinholes an additional diffraction pattern would be seen.
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Equation 22 is a description of the intensity with apertures.

ID(y; τ) = 2I0D
4sinc2

(
Dy

λ0z

)[
1 + γ(P1, P2; τ)cos

(
2π

λ0

(
By

z
−∆d

))]
(22)

The addition of temporal coherence in spatial interferometers will directly have an

effect on the fringe patterns by changing their phase and amplitude. The larger the

path difference the greater the phase shift and effect on fringe depth, also known as

visibility.

2.6.3 Visibility and Fringe Tracking

Analyzing the fringes is important in order to back track a fringe pattern to

solve for any path difference. The act of analyzing a fringe and estimating the path

difference from this analysis is called fringe tracking. Fringe tracking is used to lower

the interferometric path difference as much as possible.

2.6.3.1 Visibility

Classical fringe analysis started with the Michelson fringe visibility which was

defined by Michelson [21] as the following:

V ,
Imax − Imin
Imax + Imin

(23)

where Imax is the max intensity of the fringe pattern and Imin is the minimum in-

tensity. Visibility measures the normalized depth, or amplitude, of the fringes. This

means that visibility is directly proportional to the complex degree of coherence:

V ∝ |γ(P1, P2; τ)| (24)
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This classical method of measuring visibility is not entirely useful for determining

path difference though. When there are very weak fringe patterns, or none at all, the

pattern introduced by the diffraction of the apertures maybe measured as a fringe.

This produces higher visibility measurements than there actually should be.

Fourier analysis of fringe patterns is advantageous because it allows for analysis

of the frequency of fringes. After taking the Fourier transform of the interferogram,

iD(f) = F{ID(y)}, a new visibility measurement is needed. This measurement will

be the ratio of peaks in the Fourier transform which is defined by Equation 25. One

peak is from the lower frequency of the diffraction pattern. The other peak is from

the higher frequency of the fringe pattern. As fringes decrease with path difference,

the ratio will decrease as well. The more prevalent the fringes are then the higher the

second peak and ratio. This ratio will be termed the Fourier visibility.

FV ,
i2ndPeak − imin
imax + imin

(25)

where i2ndPeak is the value of the second highest peak which is related to the frequency

of the diffraction pattern. The variables imax and imin are the maximum and min-

imum values of iD. The simulated Fourier visibility of a rectangular spectrum was

plotted against the OPD for Figure 10. As the difference grows fringes decrease. The

lowest point of this visibility occurs close to 8µm which was the coherence length of

the rectangular spectrum being simulated. Different shaped spectrums will produce

different visibilities per the OPD. The direct relationship of a fringe pattern to total

OPD is an important step to estimating path difference.

2.6.3.2 Current Fringe Tracking Methods

The are currently three widely used fringe trackers in use today. These are dis-

cussed in detail in the course notes of “Principles of Long Baseline Stellar Interfer-
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Figure 10: Fourier visibility, FV , per path error (µm) for a rectangular spectrum of
500nm to 560nm

ometry” [22]. These three methods are coherence envelope, group delay, and phase

tracking. Coherence envelope tracking does a sweep of the delay several times greater

than the coherence length. The delay is then set to the location of the greatest num-

ber of fringes. Group delay tracking uses the Fourier visibility described previously to

determine path error and sets the delay accordingly. Phase tracking involves measur-

ing the phase of the fringe pattern and relating the phase back to a path difference.

This is done by modulating the path delay by a known amount at least three times

in order to collect three different fringe patterns. By analyzing these three different

images the three unknowns in Eq. 22 of source intensity, complex degree of coher-

ence, and fringe phase can be solved for. As seen in Eq. 22, the phase of the fringe

is directly related to the path error. The delay is then adjusted based of this path

error.

Out of all of these fringe tracking methods, group delay is the most simple and
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least time consuming method to implement. All visibility mapping of a source can

be done upfront or if the spectrum of the source is known then visibility per path

difference can be simulated. Only one image is needed to obtain a path difference.

Coherence envelope tracking is only as accurate as the baseline sweep, and must be

done again when fringes are reduced due to the changes of the atmosphere over time

[22]. Phase tracking also modulates the delay path, records, and analyzes three or

more images compared to group delays one image.

2.7 Summary of Background and Literature Review

The background of this research covered an array of optical studies. All of these

areas of study, along with several others, were needed to achieve the research goals

laid out in chapter 1. The main area of concern though is that of Zernike coefficient

covariance. The background of Zernike covariance and von Karman Turbulence are

the basis of defining piston covariance.
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III. Methodology

In order to obtain piston variance and the autocovariance the von Karman tur-

bulence model is chosen instead of the Kolmogorov turbulence model since piston

variance in the Kolmogorov model is assumed to be infinite. This is due to the fact

that the Kolmogorov phase PSD approaches infinity as spatial frequency approaches

zero. In reality this assumption is untrue and finite piston variance can be seen in in-

terferometry. The path error in interferometers is in fact the difference in mean phase

error between two apertures. The piston Zernike can be defined as the mean phase

error. Since the phase error has a finite variance then the piston Zernikes must have

a finite variance as well. For this reason, von Karman turbulence is chosen because

it has a finite PSD as spatial frequencies approach zero.

The two atmospheric variables needed to obtain piston variance are the seeing

parameter and outer scale. This is because the piston variance is going to be a

function of the von Karman PSD. This leads to the piston variance and autocovariance

ultimately being a function of these two variables. In order to experimentally verify

the model, a method of measuring the seeing parameter and outer scale needed to

be chosen. Using the piston variance model to be discussed as a baseline, a similar

model was created for tilt. There will be an explanation of the calculated tilt variance

and covariance and how it is used in data collection later in this chapter. The optical

setup for data collection will be described near the end of the chapter as well.

3.1 Variance of Piston

3.1.1 Derivation

The variance of piston is simply the variance of the mean phase over a certain area.

As the turbulent air changes its mean density throughout the path of the light, then
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the mean phase of the wave will change as well. When the light arrives at the aperture

the mean phase will be the piston. As stated previously, the Zernike polynomial for

piston is simply unity. Taking the definition of Zernike coefficient covariance given by

Noll, Eq. 17, and using PSD of von Karman turbulence Eq. 8, the following equation

is formed:

〈a∗1a1〉 = R−2

∫ ∫
|Q1(fu, fv)|2

0.022896R11/6

r
5/3
0

(f 2
u + f 2

v +R2f 2
0 )−11/6 dfudfv (26)

where again, r0 is the seeing parameter, f0 is the inverse of the outer scale, R is the

radius of the apertures, and fu and fv are spatial frequencies. By moving all constants

and variables independent of spatial frequencies out of the integrals we are left with:

〈a∗1a1〉 = 0.022896

(
R

r0

)−5/3 ∫ ∫
|Q1(fu, fv)|2 (f 2

u + f 2
v +R2f 2

0 )−11/6 dfudfv (27)

Q1(fu, fv) =
J1(2π

√
f 2
u + f 2

v )

π
√
f 2
u + f 2

v

(28)

where J1 is a first order Bessel function. Following the method laid out by Noll, the

Q function in the case of piston can be seen in Eq. 28. For the purpose of simplifying,

the constants and seeing parameter, r0, outside the integrals will be defined as β, seen

in Eq. 29.

β(r0) = 0.022896

(
R

r0

)−5/3

(29)

The final definition for the variance of piston, defined as σ2
p, is seen as Eq. 30.

This function will not be solved analytically but will be solved numerically using a

computer.

σ2
p = 〈a∗1a1〉 = β(r0)

∫ ∫ ∣∣∣∣∣J1(2π
√
f 2
u + f 2

v )

π
√
f 2
u + f 2

v

∣∣∣∣∣
2

(f 2
u + f 2

v +R2f 2
0 )−11/6 dfudfv (30)

30



www.manaraa.com

3.1.2 Numerical Analysis

Figure 11: The log-scale of piston variances per outer scale, in meters. Several differ-
ent ratios of R/r0 are plotted.

The analysis of Eq. 30 was done using MATLAB. The MATLAB code of this

analysis can be found in the appendix. The frequency spectrum was sampled at a rate

of fs = f0/2. As seen by Figure 3.1.2 as the outer scale increases the variance of piston

grows quite rapidly. It can also be seen that the variance follows a similar ‘5/3rds’

rule as seen in Noll’s work[6]. As with all other Zernike coefficient variances found

using von Karman turbulence, Piston variance will approach the Zernike coefficient

variance found using Kolmogorov turbulence as outer scale approaches infinity. This

means in the case of piston it will approach infinity as outer scale approaches infinity.

In practical applications though this does not mean that with a larger outer scale

that there will be a larger piston variance. Usually as outer scale increases with less

turbulent air so does the seeing parameter. It is important to keep in mind that the

two are dependent variables.
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3.2 Spatiotemporal Piston Autocovariance

The spatial piston autocovariance, and correlation, of two separate apertures can

be solved in a similar fashion as the variance of one aperture. If it is assumed that

the two apertures in question are of identical size then the only needed extra input

for the spatial autocovariance is the separation, or baseline, of the apertures in both

the X and Y-axis. Following the work of Putnam[9] and Conan[10], this separation

will be treated as a shift. By applying the Fourier shift theorem to Eq. 30 the spatial

autocovariance can be defined as:

Cov(a1a, a1b; 0) = ΓD0 = β(r0)

∫ ∫
|Q1(fu, fv)|2 (f 2

u + f 2
v +R2f 2

0 )−11/6...

exp (2πiR−1(Bxfu +Byfv)) dfudfv (31)

where Bx and By are the X-axis and Y-axis spatial separation between the center of

the apertures, and i =
√
−1. This is referred to as the baseline in interferometry. The

value (1/R) in the exponential is a product of the shift and normalization of frequency,

it’s proof can be seen in appendix A. Of course, in order to find the autocorrelation

of the piston coefficients the autocovariance will need to be divided by the piston

standard deviation of the two apertures in question.

The same method used in Putnam[9], Cain[23], and Richmond[24] will be used in

order to derive the spatiotemporal autocovariance. The spatial shift in the turbulent

air caused by wind will be determined by the winds velocity. This spatial shift from

the movement in the turbulent air is again applied to Eq. 31 to get the spatiotemporal
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autocovariance of piston in the two apertures:

Cov(a1a, a1b; τ) = ΓDτ = β(r0)

∫ ∫
|Q1(fu, fv)|2 (f 2

u + f 2
v +R2f 2

0 )−11/6...

exp (2πiR−1((Bx + vxτ)fu + (By + vyτ)fv)) dfudfv (32)

where vx and vy are wind speeds corresponding the two axes, and τ is the time

between the images. Figure 11 shows that as the spatial shift in Eq. 32 increases

the piston autocovariance, and hence correlation, decreases in the two apertures.

The autocovariance decreases less while the shift is less than the aperture radius

length and then more rapidly after the shift increases beyond the radius length. The

autocovariance decays at a slower rate as the shift reaches higher lengths but will

approach zero as the shift approaches infinity.

Figure 12: The autocovariance of piston per spatiotemporal shift, in meters. The
radius of the apertures were set at 0.5m, r0 was set at 10cm, and L0 at 50m

3.3 Tilt Variance and Spatiotemporal Autocovariance

In order to obtain the tilt variance and autocovariance the same method will be

used as was used for piston, but the Q-function will be changed to reflect X-tilt, also
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known as tip. Y-tilt will have the same results as X-tilt due to it being the same

polynomial except the change in the y-axis. Again, the basis for this section will be

Eq. 17. Due to j being even, and n and m being 1, the Q-function resolves to Eq.

33 for X-tilt.

Q2(fu, fv) = 2i
J2(2π

√
f 2
u + f 2

v )

π
√
f 2
u + f 2

v

cos(tan−1(fu/fv)) (33)

where J2 is a second order Bessel function. The X-tilt variance and autocovariance

can be seen below as Eqs. 34 and 35. The only change in these equations from their

piston counterparts is the change in the Q-function. This is due to the Q-function

being the Fourier transform of the aperture-Zernike polynomial product.

Figure 13: The tilt variance at three different values of R/r0. The dashed lines of
same color are the values of the tilt variance if Kolmogorov PSD is used instead of
von Karman PSD.

〈a∗2a2〉 = β(r0)

∫ ∫
|Q2(fu, fv)|2 (f 2

u + f 2
v +R2f 2

0 )−11/6 dfudfv (34)
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Cov(a2a, a2b; τ) = β(r0)

∫ ∫
|Q2(fu, fv)|2 (f 2

u + f 2
v +R2f 2

0 )−11/6...

exp (2πiR−1((Bx + vxτ)fu + (By + vyτ)fv)) dfudfv (35)

As expected, numerical analysis shows the tilt variance approaching the tilt vari-

ance determined by Noll as the outer scale approaches infinity. Figure 13 shows this

at several different R/ro values. This is expected because the von Karman PSD

approaches Kolmogorov PSD as the outer scale increases in value. As seen in Fig-

ure 14 the spatiotemporal autocovariance acts as expected as the magnitude of the

spatiotemporal shift increases. There is a noticeable difference between the autoco-

variance of the piston and tilt. The piston remains more correlated than tilt as the

shift increases. This means at any baselines for interferometers piston will have a

higher autocorrelation than any Zernike coefficient and X-tilt and Y-tilt will have the

second highest. The same can be said for higher wind speeds or longer delay between

image capture. This pattern follows the work of Noll[6]. As the order of the Zernike

polynomial grows the autocovariance will start to resemble a Dirac delta function

more.

Figure 14: The autocovariance of tilt per spatiotemporal shift, in meters. The radius
of the apertures were set at 0.5m, r0 was set at 10cm, and L0 at 50m
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3.4 Piston Tracking with Fringe Tracking

Fringe tracking, as mentioned in 2.6.3, is used to partially correct for optical path

difference in interferometers. This section will describe how to model and implement

piston differential into a fringe tracker, in this case a group delay tracker. Instead

of setting path delay to the previously recorded path delay, as described in 2.6.3,

two piston states will be estimated and tracked using a Kalman Filter. Group delay

tracking will give the updates to the Kalman Filter. This use of Kalman filtering

using Zernike pistons as states has been termed piston tracking.

3.4.1 State Definition

The states will be the piston Zernikes of the two aperture interferometer. This

state vector is defined as:

~a =

a1a

a1b

 (36)

The first step in defining a stochastic model is to define the mean and covariance

of the states. Again, in this case the states are the piston coefficients of the two

apertures making up the interferometer. The mean of piston is assumed zero and the

covariance matrix of two pistons can be seen in Eq. 38. It should be noted that while

the mean of atmospherically introduced piston is zero the mean of piston could not

necessarily always be zero; the physical set up of an interferometer could cause some

mean path difference.

~µa =

0

0

 (37)

Γa(a1a, a1b; 0) =

 σ2
p ΓD0

ΓD0 σ2
p

 (38)
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where again, ΓD0 is the piston spatial covariance or Cov(a1a, a1b; 0), and σ2
p is the

variance of piston.

3.4.2 Conditional Mean and Covariance of the States

The next step in deriving the stochastic model is to define how states evolve

temporally, or the temporal relationship they have with one another. To do this the

conditional means and covariances of pistons at tk given to the two previous pistons

at time tk−1 will be needed. The conditional mean and covariance of the piston in

aperture ‘a’ at time tk is defined as:

µ̂(tk) = E[a1a(tk) | ~a(tk−1) = ~a] (39)

σ̂2(tk) = E[(a1a(tk)− µ̂a(tk))2 | ~a(tk−1) = ~a] (40)

where ~a is a vector of realizations of the two piston states. This conditional mean

and covariance can be found first by defining a vector of all three random variables

a1a(tk), a1a(tk−1), and a1b(tk−1), then partitioning off the vector and its respectful

covariance matrix with respect to a1a(tk) which can be seen as:



a1a(tk)

a1b(tk)

a1a(tk−1)

a1b(tk−1)


(41)



σ2
p ΓD0 Γ0τ ΓDτ

ΓD0 σ2
p ΓDτ Γ0τ

Γ0τ ΓDτ σ2
p ΓD0

ΓDτ Γ0τ ΓD0 σ2
p


(42)
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where Γ0τ is the temporal covariance of piston or Cov(a1a, a1a; τ), which is the co-

variance between a1a(tk) and a1a(tk∓1). The value ΓDτ is spatiotemporal covariance

or Cov(a1a, a1b; τ), and is the covariance between a1a(tk) and a1b(tk∓1). This method

is described in “Multivariate Statistics: a Vector Space Approach” [25] and is used

to find conditional mean and covariance for random vectors following a multivariate

normal distribution. More can be read about this vector space approach in appendix

A. This vector space approach for finding the conditional mean and variance yields

the following for the conditional mean:

µ̂(tk) =

Γ0τ ΓDτ

ΓDτ Γ0τ


 σ2

p ΓD0

ΓD0 σ2
p


−1 a1a

a1b

 (43)

where the superscript on the middle matrix stands for taking the inverse, and the

values a1a and a1b are the realizations of a1a and a1b at tk−1. Solving this will give:

µ̂(tk) =
1

σ4
p − Γ2

D0

(Γ0τσ
2
p − ΓDτΓD0)a1a + (ΓDτσ

2
p − Γ0τΓD0)a1b

(ΓDτσ
2
p − Γ0τΓD0)a1a + (Γ0τσ

2
p − ΓDτΓD0)a1b

 (44)

The conditional covariance following a state vector approach is first written as:

σ̂2(tk) =

 σ2
p ΓD0

ΓD0 σ2
p

−
Γ0τ ΓDτ

ΓDτ Γ0τ


 σ2

p ΓD0

ΓD0 σ2
p


−1 Γ0τ ΓDτ

ΓDτ Γ0τ

 (45)

This can be written as:

σ̂2(tk) =

 σ2
p −

Γ0τσ2
p−ΓDτΓD0

σ4
p−Γ2

D0
Γ0τ −

ΓDτσ
2
p−Γ0τΓD0

σ4
p−Γ2

D0
ΓDτ

ΓD0 −
Γ0τσ2

p−ΓDτΓD0

σ4
p−Γ2

D0
ΓDτ −

ΓDτσ
2
p−Γ0τΓD0

σ4
p−Γ2

D0
Γ0τ

 (46)
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For the purpose of simplicity the following will be defined:

σ̂2
1 = σ2

p −
Γ0τσ

2
p − ΓDτΓD0

σ4
p − Γ2

D0

Γ0τ −
ΓDτσ

2
p − Γ0τΓD0

σ4
p − Γ2

D0

ΓDτ (47)

σ̂2
2 = ΓD0 −

Γ0τσ
2
p − ΓDτΓD0

σ4
p − Γ2

D0

ΓDτ −
ΓDτσ

2
p − Γ0τΓD0

σ4
p − Γ2

D0

Γ0τ (48)

3.4.3 Stochastic Model

Finally, with the conditional means and variances solved for the stochastic model

may be completed. Following the general format of a Kalman filter the stochastic

model will be in the form:

~a(tk) = Φ̂~a(tk−1) + Bd~u(tk−1) + ~wd(tk−1) (49)

where Φ̂ is a state transition matrix, or the temporal relationship between the states.

The value Bd~u(tk−1) is an input vector. This will be ignored for the time being but

if the path delay is adjusted this is the proper place to add piston input. The vector

~wd(tk−1) is the variance added to the states every transition and is traditionally called

the state noise vector because it is defined as additive white Gaussian noise (AWGN).

The Cholesky decomposition of the covariance of this noise vector is required to

simulate the states over time so the covariance is defined as:

Qd = E[~wd ~w
T
d ] (50)

The output, in this case the piston differential, will be defined as:

z(tk) = H~a(tk) + ~v(tk) (51)
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where z is the output, H is the relationship between the states and the output, and ~v

is output noise which will be ignored for this purpose of this paper but this is where

servo error and variance in group delay estimation may be added. In summary, the

new states will be equal to something of the old states plus noise, and possibly some

input. With the form of the model explained, the following is the definition of the

model:

Φ̂ =

Γ0τσ2
p−ΓDτΓD0

σ4
p−Γ2

D0

ΓDτσ
2
p−Γ0τΓD0

σ4
p−Γ2

D0

ΓDτσ
2
p−Γ0τΓD0

σ4
p−Γ2

D0

Γ0τσ2
p−ΓDτΓD0

σ4
p−Γ2

D0

 (52)

Qd =

σ̂2
1 σ̂2

2

σ̂2
2 σ̂2

1

 (53)

H =

[
λ0

2π

−λ0

2π

]
(54)

This stochastic model will be used to both simulate data and to Kalman filter

piston states during group delay estimation. This is done by propagating these states

through time steps, updating them with OPD obtained from fringe tracking. Eq.55

shows the conditional mean of the pistons given previous measurements and Eq.57

shows the conditional covariance of the pistons given previous measurements. These

will be used to propagate the states forward through time steps. Eq.58 shows the

conditional mean of the pistons given previous and current measurements and Eq.59

shows the conditional covariance of the pistons given previous and current measure-

ments. These will be used to update the states after a measurement.

â−(tk) = Φ̂â+(tk−1) (55)
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If there is a wish to simulate pistons the looping algorithm would be:

â−(tk) = Φ̂â+(tk−1) + Chol(Qd)

N (0, 1)

N (0, 1)

 (56)

where Chol(Qd) is taking the Cholesky decomposition of Qd and is only added when

simulating data to add variance to the states. The function N (0, 1) is a normal

random variable with a mean of zero and unit variance.

Γ̂a

−
(tk) = Φ̂Γ̂a

+
(tk−1)Φ̂T + Qd (57)

where the superscript T denotes the transpose. The update conditional mean and

covariance are:

â+(tk) = â−(tk) + Γ̂a

−
(tk)H

T [HΓ̂a

−
(tk)H

T ]−1[z(tk)−Hâ−(tk)] (58)

Γ̂a

+
(tk) = Γ̂a

−
(tk)− Γ̂a

−
(tk)H

T [HΓ̂a

−
(tk)H

T ]−1HΓ̂a

−
(tk) (59)

These equations follow traditional Kalman filtering practices. The simulations derived

from this model will be discussed in Chapter IV.

3.5 Data Collection

In order to verify the results of this model an experimentation was arranged. The

main purpose of the experiment is to verify piston autocovariance. In order to get

path error data to do this verification, fringes must be formed and fringe jitter will

be collected over time. In order to fluctuate path error the light must pass through

turbulent air. This brings up the need to estimate the seeing parameter and outer

scale of the turbulent air. To do this the light source will be split, the jitter of the
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two beams will be correlated to tilt, and those tilt variances and the tilts’ covariance

will in turn be used to estimate the seeing parameter and outer scale using the tilt

autocovariance function.

3.5.1 Lab Set Up

Figure 15: A graphic showing the rudimentary layout of the optical set up for col-
lecting tilt and fringe data.

The experiment layout will now be described starting from the source and ending

with the detector. The source being used is a LED with a bandwidth of about 490nm

to 550nm with a mean wavelength of 530nm. The spectrum being used in future

simulations and estimations can be seen in Figure 16. There is a pin hole aperture

of 30µm in front of the source. The light then passes through a collimating lens and

travels to a beam splitter. The two beams then reflect off mirrors and travel to a

focusing lens which focuses the light to the detector. The focal length of the lens is

0.2m and the detector sampling is 5.5µm. The turbulent air heat source is located

to the right of the focusing lens and is situated so the air flows in-front of the lens
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as depicted in Figure 15. The detector integration time needed is set low enough so

a frozen flow assumption could be made about the turbulence. An integration time

between 20ms to 40ms was used. Images were collected at one image per second.

Figure 16: Spectrum of source used in data collection

When collecting fringe jitter data a two hole aperture mask will be placed directly

in-front of the focusing lens. The two apertures of the mask will have a diameter of

2.779mm with a separation of 2.3mm. This will cause two fringe patterns two be

formed at the detector. If only one fringe pattern is desired a mirror is blocked. In

order to get path error data from this fringe data more post processing needs to be

done. The point source, while being very small, is not ideal and has some width to it.

The source will have to be deconvolved with the image. An example of a fringe pattern

formed in this manner can be seen by Figure 17. Then the fringe patterns will have to

be correlated to simulated fringes to determine path difference. Visibility of the fringes

was not used to determine path difference due to poor quality of the signal to noise

ratio(SNR) and the absence of enough frequency information do correctly determine

visibility. The poor SNR kept visibility measurements from being accurate enough
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to deduce an accurate enough path difference. To deduce the visibility from the

frequency information of the fringes one needs more that three fringes to accurately

do so. Unfortunately the poor SNR hides two lower intense fringes from appearing in

the images. When collecting image jitter apertures are placed in-front of the mirrors

Figure 17: Recorded fringe pattern using the optical system created for fringe, or
path error, data collection.

which limits and shapes the light arriving at the focusing lens. The image formed in

this manner can be seen in Figure 18

3.5.2 Estimation of Seeing and Outer Scale

Once jitter data is collected it will be transformed to tilt data by scaling the

data by a constant. The constant is the amount of tilt is needed to move the image

center one pixel. With this scalar the amount of pixels off center the image is can be

translated to amount of tilt seen in the image. The tilt variance of this data and the

spatial covariance of the two tilts are then found.

The results of this data are then compared to a mapping of variance and covariance
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Figure 18: Recorded ’dots’ using the optical system described for the use of deter-
mining atmospheric parameters. The arrows on the figure are marking the location
of the dots who’s source is the same but travel different optical paths.

generated by varying seeing parameters and outer scales. The seeing parameter and

outer scale that generates a tilt variance and spatial covariance most similar to that

recorded will be chosen for the turbulence. These atmospheric parameters will be

used to generate a piston variance and spatial covariance, which in turn will be used

to determine what the expected path length error variance will be.

3.6 Summary of Methodology

This chapter described the piston variance and spatiotemporal autocovariance

with a von Karman phase PSD. As discussed in Chapter 2, others have calculated

path error variance before but not with a von Karman PSD. They instead used other

non-Kolmogorov power spectral densities or other methods. It is my opinion that

other PSDs are used because they may be more accurate and can be used to achieve

closed-form expressions for Zernike coefficient covariance. This chapter describes
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solving this complex integral numerically and discretely vis-a-vie a computer. Tilt

variance and spatiotemporal autocovariance is then described due to it’s use in data

collection. This tilt model is similar to the Angle-of-Arrival model discussed in section

2.4. The method of collecting that tilt and path error data was then discussed. The

results of simulation using this piston model and the data collected will be described

in the next chapter.
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IV. Results and Analysis

4.1 Results of Simulations

There were in total 3 different simulations performed. The first was a Monte Carlo

of piston without temporal correlation. Then temporal correlation was added to the

second of the simulations. The parameters of the lab set up described in the previous

chapter were used in these first two experiments. The parameters were then modified,

and using the temporal piston model, data was generated for use in simulating the

Kalman filter and the fringe tracking performance.

4.1.1 Piston Monte Carlo Simulation with No Temporal Correlation

The first simulation done was a non-temporally correlated piston. That simulation

was a Monte Carlo Simulation and was done by generating bivariate random numbers

with covariance equal to Eq. 38. The piston variance in this instance was 1.773 and

the spatial correlation was 0.7373. This was done 125 times to generate a string

of non-temporally correlated pistons. There were 10,000 trials in the Monte Carlo

simulation. Figure 19 shows just one trial of piston and path error data generated.

The piston coefficients fluctuated widely throughout time. Although piston fluctuated

widely throughout time the two stayed closely correlated. This leads to the path error

having a variance close to 2.4x10−15m2.

4.1.2 Piston Monte Carlo Simulation with Temporal Correlation

Temporal correlation was then added and a Monte Carlo simulation using the

algorithm described in section 3.4.3 was implemented. There were 10,000 trials done.

Figure 20 shows just one trial of piston and path error data. As observed in the figure,

the pistons stay well correlated and there are no major fluctuations over time because
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Figure 19: Piston coefficients with no temporal correlation (top) and the correspond-
ing path error (bottom) in meters from those coefficients. The delay period used
was 1 second. All other system parameters matched that of the experimental setup
described in section 3.5.1 with L0 = 0.05m and r0 = 0.0079m.

of the temporal correlation. This shows that after a full second between image capture

the coefficients are not very correlated. In fact the estimated temporal correlation

between the same aperture is 0.0004 and a temporal correlation for differing apertures

of 0.0003. These temporal correlations were found using a X-coordinate wind speed

of 0.1m/s and a Y of 0.05m/s. These are estimates for wind speed but the point

is to prove that even with wind speed estimates and a delay of 1s that temporal

correlation is low. The path error fluctuates at a variance of at 2.4x10−15m2 which

matches when no temporal correlation was considered. A this variance the maximum

path error stays well under a micrometer. The coherence length of the source light

is 8µm . With this in mind the fringes in the experimental data collection should

remain apparent throughout time.

There was an interest to find when the temporal correlation reaches to a point of

0.5. This is because a strong temporal correlation would be needed if there is future

interest in analyzing temporal effects. By simulation, it was found that the time delay
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Figure 20: Piston coefficients with temporal correlation (top) and the correspond-
ing path error (bottom) in meters from those coefficients. The delay period used
was 1 second. All other system parameters matched that of the experimental setup
described in section 3.5.1 with L0 = 0.05m and r0 = 0.0079m.

that gives a temporal correlation of 0.5 was found to be 0.08s. The temporal correla-

tion at 20ms and 40ms are 0.9233 and 0.7795 respectfully. This is important to note

because those are the two different integration times used during data collection. The

very small integration time is needed for the frozen flow turbulence assumption made

during image capture. Completely frozen turbulence will have a temporal correlation

very near 1.

4.1.3 Fringe Tracking Performance

The Kalman filter developed was used to supplement a group delay fringe tracker

in simulation. This was done using a fringe pattern simulation created at AFIT by

another graduate student and faculty, and the path error data generated by the piston

simulation model with temporal correlation. The parameters of the simulation were:

R = 0.125m, Bx = 2.5m, By = 0m, τ = 0.1, vx = 1m/s, vy = 1m/s, L0 = 8.5m, and

r0 = 5cm. These parameters led to a piston variance of 441, spatial correlation of
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0.2714, a temporal correlation of 0.9825, a spatiotemporal correlation of 0.2543 and

a path error variance of 8.1x10−14m2. A performance comparison was done with the

Kalman filter and without the filter. A green light source was used for the fringe

simulation. Figure 21 shows a realization of the visibility for three different cases:

group delay with piston tracking, group delay only, and no fringe tracking. When

Figure 21: The visibility over time of group delay with piston tracking, group delay
only, and no fringe tracking. Path error data used was generated.

group delay is implemented the visibility improves drastically. Just from observing the

figure though it doesn’t appear that adding piston tracking improved the situation.

In reality, the average visibility with piston tracking is slightly higher than only group

delay fringe tracking. Table 3 shows the mean visibility and variance for a 100 trial

Monte Carlo simulation. Out of the 100 trials, 85 of them have better or equal

visibility with piston tracking. The variance for piston tracking-group delay is also

lower than without piston tracking. This can be important in the implementation of

a delay path to correct for path error. The lower variance helps the servo of the delay

path adjust to the needed position faster. Most of the time the variance is lower with

piston tracking; 90 of the 100 trials had lower variance with piston tracking. The

piston tracker will improve the visibility and lower variance variably with different
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interferometer and atmospheric parameters.

Table 3: Fringe tracking performance showing a comparison between no fringe track-
ing, group delay, and group delay with piston tracking

Mean Visibility Variance

No Fringe Tracking 0.8500 6.95x10−4

Group Delay Only 0.9197 2.32x10−3

Piston-Group Delay 0.9205 2.15x10−3

4.2 Results of Data Collection

In order to prove the validity of the piston correlation model the experiment de-

scribed in section 3.5.1 was implemented. To reiterate, tilt data was first collected

to estimate the atmospheric parameters of outer scale and seeing parameter. Fringe

patterns were then formed and collected to estimate path difference. Using the outer

scale and seeing parameter estimated from the tilt data, a theorized path error vari-

ance can be generated and compared to the path error variance collected by the fringe

patterns.

4.2.1 Tilt Correlation and Atmospheric Parameters

The tilt data was collected using the lab set up discussed in section 3.5.1. Once

image motion was collected, the center of the two images per each frame was calcu-

lated. The amount of pixel movement from the mean center is proportional to the

amount Zernike tilt. The proportion of pixel movement to Zernike tilt was calculated

by modeling the optical system. This process is how the X-tilt and Y-tilt of each

image was calculated per frame. Figure 22 shows the first 125 X and Y-tilts coeffi-

cient values for the two images captured. From the X-tilt variance and correlation

values collected the atmospheric parameters were estimated. This was done by first

mapping out values of X-tilt variance and spatial covariance using different values of
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Figure 22: The X and Y-tilt data for the first 125 image captures. X-tilt variance
of 0.0781 and correlation of 0.3241, Y-tilt of 0.0686 and correlation of 0.5432 were
collected

outer scale and seeing parameter. Then the nearest matching variance and spatial

covariance was chosen. Table 4 shows a comparison between the recorded and chosen

tilt variance and spatial correlation.

Table 4: A comparison of tilt covariance data and chosen covariance for parameter
estimation

Variance Spatial Correlation

Recorded 0.0781 0.3241
Chosen 0.0777 0.3173

The outer scale corresponding to this tilt variance and spatial covariance is L0 =

0.05m and a seeing parameter of r0 = 0.79cm. This is very poor atmospheric seeing

quality but poor quality seeing was expected because warm air is being generated

and blown across the apertures in an air conditioned environment.

4.2.2 Piston Fringe Data

The fringe data was generated by using the lab set up described in section 3.5.1.

After fringes were captured each image needed to have the source deconvolved with

it as described in section 3.5. This source deconvolution made the fringes more
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prevalent. The fringes were then correlated to simulated fringe patterns set at a

range of differing path errors. Once a fringe pattern match was determined the

path error was known. It should be noted that this process was not the original

process to determine path error and the Fourier visibility was originally going to used

to estimate path error. Problems arose during the implementation due to the low

number of visible fringes; lower intensity fringes were hidden by low signal to noise

ratio (SNR). Figure 23 shows the collected path error per frame of 125 frames. Two

fringe patterns were collect per frame and fringe patterns were recorded at 20ms,

30ms, and 40ms integration times. SNR is naturally higher at the 40ms integration

time but the frozen flow assumption holds less. The vice versa can be said about the

20ms integration time. Another matter to note is that there was some visible error

Figure 23: Path error data collected at 40ms integration time. The variance for this
125 frame data set was 2.16x10−15m

when correlating the captured fringe patterns to simulated patterns. The error was

slight and only occurred in about half a dozen of the 125 frames but may have led

to some error in estimating the path error variance. The mean path error variance

recorded was 2.34x10−15m2; this is the mean of the six recorded realizations. The

mean path error in this case is near 3.627um. The reason for the mean path error

being so high is piston aberration in the optical set up. The aperture mask simply

was not laid completely flat on the focusing lens.
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4.3 Comparisons

The results of the experiment compared to that of the simulation are promising.

In review, the simulation gave a path error variance near that of 2.4x10−15m2 and the

recorded results gave a path error variance of 2.34x10−15m2. Considering that the

recorded variance maybe slightly off due to the error of the path error estimation, it

might be closer to 2.4x10−15m2 than recorded. There might also be error in estimating

the atmospheric parameters or other error cause by other steps in the data collection

process. The percent error of the recorded variance to that of the theoretical path

error variance was 2.6%

4.4 Summary of Results

The over all results show that this model can be used to simulate Zernike piston

and path error variance with a low degree of error. Also, that atmospherically induced

Zernike piston remains temporally correlated within an integration time needed for a

frozen flow assumption. This demonstrated that pistons of a multi-aperture optical

system like an interferometer are highly spatially correlated when the baseline is

small and less correlated when the baseline is quite large compared to the radius of

the apertures. This larger baseline will cause quite large path error variances which

is what makes large baseline stellar interferometry so difficult. This piston model

can be looped for use as a Kalman filter which can aid in fringe tracking purposes.

The trade off between baseline, aperture size, and system cost and complexity is a

vital one. By using this Zernike piston model the ability to accurately predict what

interferometers will see will add in this trade off analysis.

54



www.manaraa.com

V. Conclusions

5.1 Summary of Research

It was hypothesized that the Zernike coefficient statistics for the atmosphere above

multi-aperture optical systems can be used for simulation of turbulence effects, es-

pecially fringe variance, and for measuring atmospheric turbulence parameters. The

methodology taken to prove this hypothesis lead to the statistical models for Zernike

piston and tilt using von Karman turbulence. The statistical models were functions

of the atmospheric parameters r0 and L0. These models were derived from the com-

bination of verified research of others. These statistical models were then used to

produce simulated results. These simulations were compared to empirical data to

show that they can in fact produce natural analogous results. This proves that the

hypothesis does have merit. In the process of verifying the hypothesis the first three

research goals were completed. The last research goal of exploring possible uses for

this model was reached by showing the benefit of including Kalman filter estimation

into fringe tracking. With the hypothesis verified and research goals completed the

problem first defined in the introduction is closer to resolution.

5.2 Recommendations and Future Work

If in the future this work is to be continued there are several avenues that should

be explored to better the research done and advance it. The following could be done:

1. Due to time constraints, an in depth comparison between the accuracy of the

atmospheric parameters produced by this model, and the model used by a

DIMM or GSM, was not accomplished and should be done.

2. There should also be a comparison done between this piston differential model
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and other models developed.

3. In order to reduce the error in the recorded data a more intense source could be

used. A more intense source could better the SNR and make the weaker fourth

and fifth fringes more prevalent.

4. Other modifications of the lab set up could also have adjusted the prevalence

of the fringes. For example, the baseline of the apertures on the mask where

separated to the same distance as the diameter the columnizing lens. The

baseline could not have been bigger than the lens but a larger baseline would

have produced more fringes. A larger columnizing lens would have allowed for

this.

5. Another step to take to get rid of the error in the recorded data is to try

different methods of path error estimation. There are several methods besides

using visibility to estimate path error. The changing phase of the fringe pattern

can be used for path error estimation. It also should be possible to use a phase

retrieval algorithm to estimate the path difference.

6. In order to use the piston model for the estimation of r0 and L0 a fringe correla-

tion model, the correlation of two of more fringe patterns, should be developed

using this work as a basis.

7. The correlation between piston and other Zernikes should be explored.

8. On sky data, or data recorded by means of a telescope observing a star or object

in orbit, should be used in order to better compare this model to other variance

models like that used by the differential image motion monitor or the general

seeing monitor.
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9. Future work could include building and testing a sensor for use in obtaining on

sky, or real time, atmospheric parameters using this model. This sensor could

even be patented.

10. In order to verify the simulated temporal correlation results data should be

obtained that is orders more temporally correlated than that used in this re-

search. There was a software limitation in this instance that kept the camera

from recording images less than once per every second. A high speed camera

can be used to rectify this limitation.

5.3 Significance and Impact

This research can directly impact the ability to simulate fringe and image jitter,

which can help design better optical systems. It can also lead to less error in path

delay systems that match the phases of interferometer paths which better resolutions

of interferometers. Lastly, it can produce a new method of atmospheric seeing by

using both image jitter and fringe jitter, or just fringe jitter, which can ultimately

lead to better optical sensor technology and image resolution.

This research is a small step forward in solving a capability gap for the military

and public space situational awareness communities. Ground based telescopes are

far cheaper and sustainable than space based telescopes. In order for space battle

management and planetary defense to thrive they need a mix of ground and space

based radar assets along side efficient, high resolution ground based telescopes. This

research can help close a capability gap in our space battle management and planetary

defense systems.
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Appendix A. Math Appendix

1.1 Covariance From Spatial to Wiener Spectrum

1.1.1 Transformation of Zernike Coefficient Variance to Wiener Spec-

trum from Spatial Domain

〈
a∗jaj′

〉
=

∫ ∫ ∫ ∫
A∗(u, v)Z∗j (u, v)A(u′, v′)Zj′(u

′, v′)Γθ(Ru
′−Ru,Rv′−Rv)dudvdu′dv′

(60)

Using the Wiener-Khinchin theorem on the phase covariance function we get:

=

∫ ∫ ∫ ∫
A∗(u, v)Z∗j (u, v)A(u′, v′)Zj′(u

′, v′)...∫ ∫
R−2Φθ(fu/R, fv/R)ei2π(fu(u′−u)+fv(v′−v))dfudfvdudvdu

′dv′

Defining the product of the aperture and Zernike polynomial as A(u, v)Zj(u, v) =

Pj(u, v) allows us the write the equation as:

=

∫ ∫ ∫ ∫
P ∗j (u, v)Pj′(u

′, v′)

∫ ∫
R−2Φθ(fu/R, fv/R)ei2π(fu(u′−u)+fv(v′−v))dfudfvdudvdu

′dv′

Rearranging the equation gives:

=

∫ ∫
R−2Φθ(fu/R, fv/R)

[∫ ∫
P ∗j (u, v)e−i2π(fuu+fvv)dudv

]
...[∫ ∫

Pj′(u
′, v′)ei2π(fuu′+fvv′)du′dv′

]
dfudfv

=

∫ ∫
R−2Φθ(fu/R, fv/R)Q∗j(fu, fv)Qj′(fu, fv)dfudfv

= R−2

∫ ∫
Q∗j(fu, fv)Qj′(fu, fv)Φθ(fu/R, fv/R)dfudfv
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1.1.2 Transformation of Zernike Coefficient Spatial Autocovariance to

Wiener Spectrum from Spatial Domain

Remembering that spatial lengths were normalized by the radius of the apertures,

any spatial shift would also need to normalized by the radius R. This leads to

modifying equation 60 by the spatial shift Bx in the x-axis and by By in the y-axis

for one coefficient.

〈
a∗jaj′

〉
=

∫ ∫ ∫ ∫
A∗(u, v)Z∗j (u, v)A(u′, v′)Zj′(u, v

′)...

Γθ(Ru
′ −Ru+Bx, Rv

′ −Rv +By)dudvdu
′dv′

Using the Wiener-Khinchin theorem on the phase covariance function we get:

〈
a∗jaj′

〉
=

∫ ∫ ∫ ∫
A∗(u, v)Z∗j (u, v)A(u′, v′)Zj′(u

′, v′)...∫ ∫
R−2Φθ(fu/R, fv/R)ei2π(fu(u′−u+Bx/R)+fv(v′−v+By/R))dfudfvdudvdu

′dv′

Defining the product of the aperture and Zernike polynomial as A(u, v)Zj(u, v) =

Pj(u, v) allows us the write the equation as:

=

∫ ∫ ∫ ∫
P ∗j (u, v)Pj′(u

′, v′)

∫ ∫
R−2Φθ(fu/R, fv/R)...

ei2π(fu(u′−u+Bx/R)+fv(v′−v+By/R))dfudfvdudvdu
′dv′
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Rearranging the equation gives:

=

∫ ∫
R−2Φθ(fu/R, fv/R)ei2π(fuBx/R+fvBy/R)

[∫ ∫
P ∗j (u, v)e−i2π(fuu+fvv)dudv

]
...[∫ ∫

Pj′(u
′, v′)ei2π(fuu′+fvv′)du′dv′

]
dfudfv

=

∫ ∫
R−2Φθ(fu/R, fv/R)ei2π(fuBx/R+fvBy/R)Q∗j(fu, fv)Qj′(fu, fv)dfudfv

= R−2

∫ ∫
Q∗j(fu, fv)Qj′(fu, fv)Φθ(fu/R, fv/R)ei2π(fuBx+fvBy)/Rdfudfv

1.2 Multivariate Normal Conditional Mean and Covariance

According to the text “Multivariate Statistics: A Vector Space Approach” [25],

page 116, for any multivariate normal random vector a vector space approach can be

used to find a conditional mean and variance of an element of that random vector

given the rest of the vector. The multivariate vector is partitioned into the element

to be conditioned and the element that is being given as seen below:

~x =

~x1

~x2


These sub-vectors will have sizes of: q x 1

(N − q) x 1


These sub-vectors will have mean vectors of the same size:

~µ =

~µ1

~µ2


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WhereN is the length of ~x and q is the length of ~x1. The covariance of the multivariate

normal random vector is also partitioned:

Σ̄ =

Σ̄11 Σ̄12

Σ̄21 Σ̄22


This partitioned covariance will have sizes:

 q x q q x (N − q)

(N − q) x q (N − q) x (N − q)


The conditional mean is defined as:

E[~x1|~a] = µ̂ = ~µ1 + Σ̄12Σ̄−1
22 (~a− ~µ2)

Where ~a is the realization of ~x2. The conditional variance is defined as:

V ar[~x1|~a] = Σ̂ = Σ̄11 − Σ̄12Σ̄−1
22 Σ̄21
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interferometers, and fringe tracking. This research will focus on developing a statistical model for Zernike piston
introduced by atmospheric turbulence.

Zernike Piston Statistics, Piston Differential, Interferometry, Fringe Tracking, Atmospheric Seeing, Outer Scale
Measurement
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